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3 ! magnetic conducting slab made of iron or steel is inves+igated. The diffusion
umwgi . of the electromagnetic field in the highly conducting slab is complicated by

L the presence of the nonlinear saturation of the ferromagnetic permeability

E“ H 4, due to the large amplitude of the incident EMP. Such a saturationm,

{1

compared to the no-saturation constant y case, makes the field diffuse faster
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SECTION 1. INTRODUCTION AND SUMMARY

L.l INTRODUCTION

B

o e

In protection against an EMP [1] (electromaguetic pulse), ferromagnetic
metallic shieldipg 1s one of the simplest and most commonly used effective

H

schemes {21, The gffiocivensss of the chileding, measured by the ratfo of the

field penetrated across the shield to the incident field, depends of course

i 5 '.1-»6\_‘1.'_;1:\1"?—- ekt

on the EM properties and the geomerry of the shielding material. Genarally
speaking, the dominant material properties are its conductiviiy ¢ and
permeability p, and, if the shielding enclosure nas its radius of curvature
much larger than the wave length of the incident fileld aund is free of

seams and cracks, the only important geometrical factor is the thickness

of the shilelding plate.

In this report, we investigated the ghielding problem for tha incidest
EMP in the form of a cylindrical TEM wave, such as a wire carrying a
surge arrestor current trerminated a2t an iron or steel shielding plane [3].
decause of the large straength of the incident fiald, the nonlinear
ferromagnetic saturavion of the plate plays an important role in deter-
mining the peak and the shape of the tramsmitted field. This problem,
based on and together with its one~dimensional plane-wave-incidence
version, is solved analvtically for a constant u case. The analytical
results are then usad to partly predict and to interpret the numerical
results for the one-dimension nonlinear case, cbtained by using a finite
difference code DIFUSN, and to help predict the tehaviors for the

cylindrical nonlinear case.

In the following, Secrion 1.2 briefly summarizes the results found in
this report; Secrion 2 solves, analytically and numericallyv, the one-
dimension plane-wave problem; based on this, Section 3 solves the cvlin-

drical incidence probienm.

e e
% BRchong b




.. As to the system of units i{n this report, rationalized ¥KS iz uped.
1.2 SINDMARY

We briefly summsrize here the results obtained in this report. Detaills of

thets are given in the subseguent texr.

L. For wavalesgths large compared to zthe shleiding's radius of
curvature, high-y conducting plates shield EMP very effeccively.
For short wwulise and thick 2lab, the diffused~through transmitted

! field varies as «{o u a2&3)"1. This gives a peak traosumitted

s field ~3 x 10703 at

W = 3oy 166 radian/sec, L %195, 10° wmho/meter, dvimm. The

chat of the iacident peak value for a typical

) time width of the transmitted field varies as wuséz, giving
i “3.3 x lth sec for the typical example. This makes the shieidiag
better for the higher frequencies, and thus substantially shifcs

downward the trangmitted wave's freguency comntents.

2. The non~linesar saturation of the ferromagunetic permeability,
which saturates 43/d4H to smaller values for stronger field,
slightly reduces the transmitted field but leaves virtually
intact its time shape. This is caused by the fact that for the

relatively narrow EMF in a2 relatively thick slab, the saturation

disperses and disrributes more evenly the diffused field and
mitigates the build up of its local peak value, in surprising
contrast to the simple intuition, naively extrapolated from che
constant-u case, that a smaller permeability admits more field
in a shorter time, an extrapolation valid only when a wide pulse

saturates the whole thin slab.

3. The cylindrical problem, with a wire carrying a large current,
such as a surge current arrestor, terminrted at a shielding
wall, is solved approwimartely. Its results are simply related

to those of the one-dimensional problem, enabling us to uake

e R e i R e T S T TS eIy
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use of the one-dimensional results for the cylisdrical pre-
dictions. Roughly speaking, the main part of the cylimdriesl
diffused fields are a/p times thar of the one~dimensional
aues for pla and go to zers for o+o, with minor deviations
being compliicatsd functions of the varicus parameters of

tha prodblem.

The abovy -2zults are found edther asalytically or mumerically, or both.
From thes we can safely cooclude that for practical DMP shieldings using
the highliy effective high-u conducting plates, the farromagnetic saturgtion
ouly slightly enhaunces the shizlding affectivensss. A side result is thar
the presences of holes, cracks, ov seams at the shielding plate probably

constitute more iwportant modes of penetration for the incident EMP.

FEPIRPTYY, 9%
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SECTION 2. TRE ONE-DIMENSION SLAR PROBLEM

2.1 ARALYSIS FGR THE CONSTANT u CASE

Consider the one-dimensional probles depicted by Figure 1. A plane elactro~

magnetic wave with fields

4
Hiua(t.z} 2 ﬁ;acit,z} = Hof(& - %} {la}
ine ing ‘}ﬁe z
o - = 3 JUEN —r f - ?’.. ',
5 (tio) ~ Ex (t;&,} - HO EO (E c) ( b)

is incident from z = ~» pormslly upeon a slab of thickness ¢ at position
z » ., The medium to the left and to the right of the slab is uniform

and has a dielectric constant so, a permeabilicy 2y and a velocity ef

“1[2 ;&}’

iight ¢ % {uccc) The slab itself is also uniform and has &

dielectric constant ¢ = ¢ _¢

rEar @ permeabllicy y = BoH, and g conductivitcy

J such that

o~
(3%
ey

I ¥ wE, wWe
o

or aguivalently

3
" ; : i
Ty g =t o
3t

3 i LT
e} (2"
o 3t

where « is the angular fraquency of the frenuenrcy of inrerssr Nntica

that tnls condition of high slab conductivity is assumed chroughout this
7

4

11
report. In typical cases, we have 3 ~ 10' mho/m for steel, ¢ + 10 % Farad/m,
-
£

and « £ 10 radian/sec for the incident MP,;, thus (2) or (2}

) is amply
satisfied. The problem i3 to find the electromagnetic fields evervwhere,

especially {n and transmitted through the slab.



T>> we, we
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E—d-—_ .

oo™ 1

|
oot + 2/c) % T kT - 2

-vr;;€°

flt<0)=z0

c

Figure 1. The One-Dimensional Problem
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2.1.1 General Solution

Being a one-dimension problem, the only filelds are plane waves with a
magnetic field in the y-direction and an electric field in the x~direction.
In the region z < 0, the reflected fields, in addition to the incident

ones given by (1), are

ref 2z
H " (t,z) = H, g(t +3) (3a)
% (t,z2) = -n V——u" gt + 5 (3b)
[»] EO c

In z > 0, the transmitted fields are

gETans ¢ oy o B T(t - (Z;d)) (4a)
~trans Ep {(z~-d)
A (trz) = Ho‘/s T(t - —_?__) {4b)

Q

finally, in the slab 0 < z < d the high conductivity condition (2)

combines with the Maxwell Equations to give a simple diffusion equation

2
J 2 ) =
;2- H{t,»z) - uruo g 3t H(t,z) = 0, 0«<z < d (3)

for the magnetic field H(t,z) to which the electric field is related by

E(t,z) = ‘%- % H(t, 2) (6)

Now to find the fields, we merely have to solve (5) and (6), subject
to the boundary conditions that require continuous magnetic and eleetrie
fields at both slab surfaces z =+ 0 ¢ 4 z = d. 1In terms of the magnetic

field in the slab, these conditions are (Appendix A)

e,
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U T i
-g-— H(E,0) -\/-;9- gH(t,0) = -2\17"- H o £(r) (7a) 2&
A Z = [ i
[ O
2 H(t,d) + Vfﬂ oH(t,d) = 0 (7b)
9z * £ i

o]

Thus, the problem reduces to solving (5) and (7).

To express the field in a convenient and simple form, we make use of the

Laplace transform

fi(s,z) = f H{t,z) e St g = L{H(t,.2)] (8}

[

Then from (5) and (7), the resulting transformed fields in 0 < z < d

are (Appendix B)

H(s,z) = 24 £(s) [A(s) e YHIS 2 4 p(s) M98 z} (9a)
E(s,z) = ~2H_ £(s) 22 [—-A(s) e VHIS 2 4 prg) oTHOS z] (9b)

where

+)

ureos) e-2¢pos d

(A(s)) -1 - p
B(s) (1 + urgos)2 _ (1 _ ureos)z e-ZVuos d
v o U o

(3c)

In particular, this gives the transmitted magnetic field
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HOT(S) = H{g,d) = ( \/ureos)z |y €8 )ZE‘_zm d (1)
g a

e

Wsorc 4

(16"

/uss
2 R f(s) 2 U €8
- o G if rco « 1

Sh{yjuos 4)

[ SR
prmaner-

4

and the total magnetic field at the incidence side of the slab

24 f(s){( \/_— ﬁ) ~2hs d}

K Ju €y 5)2 uraos)z e_z/;;; d

[+ +)

A
e,

B 1
R

B [E(s) + g(s)] = Hi(s,0) =

B
v

(11)

= 2H_ () |1 - ——m—
2+ gdv-a—"
[o}

: Tt s
- ifs+0, ¥ rco . \Iucs d << 1 (11")

N uEsl+ ~2Yuos d
- =2Hof(s) 1- »

v 1 - g~2Ywos d

V , Yuos d £< 1 (11™)
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From these expressiouns, various approximate simple formulas can be derived
for fields in the time domain, as will be shown in the following. Such
formulas serve to predict the approximate physical behaviors of the fields
and to give insights and provide cross checks to the numerical results.
Only response to a delta~incidence, Hinc = §{t - 53, is examined in detail
analytically. HResponses to other incidences can be obtained by a convo-~
lution. In particular, the response toc a "parrow' incident pulse is
obtained by simply multiplying the time-integrated area undor that pulsa

by the é-response. The condition for such a "marrowness” is

¢ 1ies in &%)} and (¢ >> i) (12)

where {t(S)} arz the times in which the 8-rasponse expression is valid
and &to is the time-width of the incident pulse.

2.1.2 TFields Near the Incident Surface in a Thick Slab

First, for incident waves with frequency contents not too large nor too

spall

N
s < Vu

£
r o

1
V; £< Wra {13)

or, equivalently, at times not too early nor too late

M e
Ve > Y12
a

Ve #> 1o d (13")

,..._wunm@iﬁ'a
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Equation (12) clearly gives H{s,0) = 28 £(s), a total magnetic fieid at
the incident side of a highly conductive thick slab being twice the
incident value, as it should be. If the incident pulse has its peak
time within (12'), as is usually the case for EMP, then at position

z = { the magnetic field has its peak time the same as that of the inci-
dent one, but has its peak value twice that of the inmcident one.

Second, under a restriction on the frequency or time ranges that differs

slightly from (13),
/24 g — 1
urEo >> ¥z >> Wl {14)

or cquivalently

r o it
sy << T << \f;; d (%%

and at positions in the slab near but not on the left surface and not

close to the right surface such that

<< z << /6 4 {(15)

the field can be obtained from (9) by ignoring terms containing
exp(-vuos d). Such a magnetic field, for a S-incidence, is (Appendix C)

(8) e—uozZ/&t
H/ (t,2z) = Yo o3 — (16)
t 4 i
2¢ct

As a function of time, at a given z satisfying (15), the magnetic field
(16) has its peak value
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%) [s 1
H {tpkf2'2> = vﬂes (6} znr (17a)
c (1 + ......,)
pk/z uoce

at the peak-time (with given z as a parameter)

2
)] Bz
tpa:/z A (170)

Obviously, the condition (15} on z ensures that téiiz satigfies the

condition (14') on t, and therefore the results (17) are valid under

the sole restriction (15).

Viewed differently as a function of position, at a givem t satisfying
(14'), the magnetic field (16) has its maximum value

1

3
(t’zmax/t) = V;E Vso )
t(l + 2urat

at the maximum-position (with given t as a parameter)

1)) t
Zpax/t © % (18v)

which diffuses to the right with velocicy

g(® (18a)

o(®
k4

-4 (&) __1
() = dt “max/t = Zuot (18¢)
max/t

(8)
max/t
condition (15) on z, and therefore thu results (18) are valid under

Again, the condition (14') on t ensures that z satisfies the

the sole restriction (147).
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2.1.3 Fields at the Shielded Suvface of the Slab

Bd Bk ey

For g highly conductive siab satisfying the first inequalities in (14)

and (14'), without any restriction on the slab thickness, the $-vesponse

transmitted magnetic field at z = d is (Appendix C)

— . ~(2n-1)umd®
(&) V r’o 1 Z o 182 2 4t
H {t,d) = pve tS/Z {(2n~ 13° pod 2t} e

n=l

ot end Gt Ped  Need Bl

(19)
At times that (19) is valid and converges fast,
Aie To << /& & _'/ig'..é. , (20)
{19) reduces to
2
I ~pod
i e 2 4t
(8) , e (uod - 2t) e 21
i (c,d) = 10 1___512 (21)
I This transmitted field has its peak amplitude
' G PN U 1 W S
[ ple/d’ V=2 A
rvod O’dY‘:—
|
' -2 1
r = 6.25 x 10 © x - - )2( 3 )3 (22a)
r(2;:107 1073

|

|

|

|
e

12
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at a peak time

- 2
t(zid = uudzB z ucdz . 5—251223 = 2.31 x 1078 ur( g 7)(-%:3
LS 2x10° /110
{22b)
The time-width of the peak at 107t strength is
2 6 d \2
- g
(Atpk/d)lllo ~ 0.3 pod 7.56 % 10 ur(2x107)(10—3)
(22¢)
Notice that the second inequality of (20) is always satisfied by
téi}d’ and the first one is also satisfied by téé}d if
H
1 << (cd -Si (23)
0

For real shielding problems, (23) is always amply satisfied. Thus,
results (21) and (22) are valid approximations in the realistic time

interval of interest (20).

Before going into the nonlinear case, we make the side remark that the
transmitted field ﬁ(s,d) for a slab of thickness d is much smaller than
the transmitted field ﬁ(m)(s,d) at a depth 4 in a semi-infinite (half-space)

slab of the same material. In fact, for ¢ »>> HLE,S, their ratio is

u_€ s
2 re
—E-(—?-’E-z—- A '—-————q-l-— << 1 (24)
H(m)(s,d) 1+ e—ZVuUS d
13
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Intuitively, this is clearly plausible because the diffused field

reaching z = d will leave the slab surface and propagate into z > d much
1 faster for the d-thick glab case thao it does for the semi-infinite slab
case, and therefore the H{s,d} has lezss opportunity to pile up than the

i g™ (8,d) does.
EE

2.2 THE NONLINEAR u CASE

For a ferromagnetic material, the permeability depends on the magnetic

% fiald strength,snd it is the differential permeability

)

% g-g = u(l) 2 u,(H) u, (25)
gg that enters the field equation [53]. In a strict sense, hysteresis makes

dB/dH not a single valued function of H. However, for the transient
field behaviors, not the steady state behavior, that we sre imvestigating,
we can use approximately [6] the magnetization curve B(H) to get uR(H).
Such a uR(H) for a typical iroun saturates at a magnetic field s:rengch

H of the order of several hundreds of amp/uw, from a uR(H<H Y v 10 to

- 03 to uR(H>HC) ~ 10 to 1, in a range of change in H of the order of
tens of amp/meter.

-

o
[

e A very simple expression to approximately fit such a magnetization curve
. can be
i - 1
- RO
(H) = 1 + ———————r {26)
"R ICES

where Hpo 77 1 and eaa‘: >> 1. This fit gives a uR(O) N Baer @
uR(H>>HC) ~ 1, and makes the saturation transition occur in a range

24 A~ 1l/a about K ~ HC, The no-saturation case is simply represented

by HC > o

——

s ‘—ﬁaﬁ‘m—*ﬁ‘—m—v%” —r'..{."';“*‘;"'."‘.’f_ﬁ—"_ AP e i) e 2




% In the following, we first make several theoretical remarks, then solve
gg the nonlinear p problem aumerically, and finally establish the agreement

between the numerical and the asnalytical results. ;

2.2.1 Theoretical Remarks

For the linear u case, u being & constant throughout the whole slab and
independent of time, at fixed pesirions in the siasb a smaller y resylts

in a stronger diffused field (= u'l. see {17a) and (22a)) being diffused

to there in a shorter time (= u, see (17B) and (22b)). Viewed differsntly at
fixed times, the spatial profile of the field diffuses and reaches its

=1 B

— et

"aquilibrium"” shape, peaked and symmetric about the center of the slab

-5 after the incideat pulse, faster (diffusion dlstance and velocity < u-llz,
éi see {18}). As a result, a coastant smaller u not only enhances the

) diffused and transmitted . 21ds, but alse enhances the higher-frequency

;f part more than it does the lower frequemncy part. The latter statement

1/2

can be ssen for the case of interest (ureosic} << 1 from (Appendix D)

> 1 (27)

ﬂ(s d)\ H(s Sh(dvop_s,) Sh(dvou s )
ﬁ(s Sh(dy"g‘%s}) Sh(d{&';};;—'}';:

where TR U and s, > s, or from (16), (17), (21), (22) directly.

Now for a slab with 3 nonlinear u, which saturates to smaller values
where the field is stronger, the diffusion results are very different

but can still be carefully extrapolated from the linear results. First,
at constant times rhe spatial profile has its stroug-field center part
diffuse faster than the low-field edge part. Thus the strong-field
gpreads out in a wider range and retains a lower value than it does
without saturation, and it overtakes but is “confined" by the low-field
edge part, in a manner somewhat similar to a shock phenomenon. [n short,
the saturation makas strong fields diffuse more easgily, and thus acts to
distribute the field more evenly and mictigares the build-up of a localized

strong field.
15
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Second, if the pulse time-width is long compared wich the saturated peak~

[ - £ = {22
diffusion-time through the alab, tok/d witio w = u . aieqtsee (22B)),
then the diffused and rransmitted fields behave the seme s if the whole
slab has the smaller permeability “3aturated"”With larger pesks and shorter
times as described above in the beginning paragraph. Rowever, if the pulse
width is shore, i.e.,

1 - 7273 2
At < ¢, AR K T ey od

o Pk!d’“satuxateﬁ Q 2 saturated

{28}
aad the slab is thick relative to the incident wave such that the
transaitted magnetic field is much smaller than the Ec, i.e.,
< S 3 4

6.25 x 107 x oo «< H (29)

" ( o )2 d )3 [
“V2x10’ (10‘3

the maximum field at given times and the peak transmitted field at z = 4
becomes smaller than they are without saturation, due to the first effect
just mentioned. For a highly conductive slab that has g »> moaouR{ﬁ).
saturated or not, the amount of field admirted imto the slab, from (11"},

is virtually independent of u. The maximum field at a given time is roughly
inversely proportional to its spatial spread at that time. Thus, approxi-
metely we have the ratio of the maximum transmitted fields with saturation

to that without saturation {(Appendix E)

B (N.L. sat.) {no sat.)
h(FEk/d’d} n max/te (30)
H(t d)(nc sat.) {(N.L. sat.)
pk/d” max/tc

where the superscripts ¥.L. sat. and no sat. denote, respectively, the

case of nonlinear saturation and no saturation, the tc is the time at




which the gaxismuw magnetic field for the no-sSaturation case decreasss
through the Hc, and zm“c is the distance the maximes field reaches st
time € . PFrom (2-18) and of course under its validity condicion (14"},

WE ran eXpress

z{n& sat.}

(EfZ?ze . Hg éto)lfz

31
wax/t, Mpoio¥ He en
{Q-L- Mt¢} ® .
The value of ¢ Ite » larger than zizzfiaz ’ a8 discussed in the Fivst

ranark, casnot be obtained analytically in the present amalysis, but
its numerical valueé can be usged, together with (31), in {30) to relate
the nonlinesar maximum transmitted field to the linear one.

ey ¥ ~ 4 | »
Third, the :pkid and the (g:pkfd)lfla for the nonlinear case is about the
game as that of the no-saturation case, as long as (28) and (29} are
satisfieg. For under such cooditions the field is well dispersed below
Hc long bafore it diffuses to z = d, and thus it is the unsaturated u

go
thas contrels the tpk[d'

Finally, for the EMP shielding cases of practical interest, {(28) and
(28) are satisfied. This is easily seen by substituting typical numbers
into those expressions. Thus, the abuove observatious are practically

applicable,.

2.2.2 Numericul Method and Results

The anumerical code DIFUSN solves the cone~dimensional nonlinear u diffusion
problem by finicely differencing (5) and (7) with uR(H) replacing the
constant L. An implicir "I finite difference scheme, stable in the
round-off ervor and the differencing grid sizes, is used [7]. The code takes
as inputs any nonlinear funcrion uR(H), any incident pulse shape HDE(:),

and cthe propecties Var B4 of the ambient medium and ¢, 7, d of the slab.
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As outputy it gives ab each time step the fields at szome selected figed
pogitions, including of course z = O gnd =z = d, the value and the location
of the maximom magmetic fileld {(in 0 % 2 < 4} at rhar time, and the two
locations between which the magnecic field at that time exceeds a selectad
value such a8 the Ec about which the saturation ocgurs., A listiag of

the code DIFUSK is included in Appendix F.

Humericel results for a number of parameter values of practical ingerest
ate obtained and plotted. In these resulrs, the uq(ﬁ} af {28} iz taken

to reprasent the non-linear permeability, and the axpression

ine . 2
B {t,z) = HQ zin” uott%}‘ 0 < t‘i—i

€ |

o
a §, otherwise (323

is used as the iacident wave, The resulting plots and their comparisons

with analysis are given in the following.

The results for a typical example of iron shielding wich a uR(K} whose
e * 10&, Hc = 400 amp/m, and a = 1/50 =m/amp, a thickoess d = 3 om,

a conductivity o = 107 mho/m, aand an incident i, o= 10° amp/m and

w, ® 3 x 106 rad/sec are ploctted in Figure 2 to Figure 3. Corresponding
resules for this same case but with constant Moo® bp, ® uR(O) and

u, = 1 uR(W), the limiting values of the nonlinear uR{H). are alse
computed and plotted together. The plots show the maximum magnetic field

H(t‘zmax/t
wave {Figure 2-1) at the incident surface of the slab (Figure 2-2), then

)} of the diffusion profile first increases as twice the incident

breaks away from the incident wawe and decreases (Figures 2-1, 3-1, 4~1)
while diffusing into and toward the center of the slab (Figures 2-2, 3-2,
4-2), For the constsat u cases, the values and the location of H(t’zmax!t}
agree very well with those givan in (18) (in its region of wvalidity (14")

of course) from the previous analysis (labeled curved in Figures 2-i, 3-1,

2w Ll L)
SML, AL, ML)
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The value of K{r‘zmax!t) for the nonlinear u case must be less than the
larger of those for the corresponding limiting constant y cases; it

% approaches that for u, = 1 if the pulse has long duration and strong
amplitude to saturate the whole thin slab {i.e., (28) and (29) inequalities
g% reversed), and vice versa. But it does not do so mounotonically, because

of the competing saturation effect, causing the strong field near the
g z = O end to diffuse faster both in the +z direction penetrating the slab
max/c °Ff
H(t’zmax/t) for the nonlinear u case, however, always lies between those
for the corresponding comstant u cases (Figures 2-2, 3-2, 4-2}, as it
should, because the smaller saturated u under the peak permits it to
diffuse faster. Further, the spatial region within which the H(t,z):

and in the ~z direction escaping the slab. The location 2

ﬁm@ 1

P

Wz
£

exceeds the Hc of the nonlinear u case is plotted (Figures 2-3, 3-3).
This region is roughly the extent withia which the nonlinear saturation

oo 8
Yovne s ol

occurs, and its disappearance marks approximately the end of the satura-

tion effect.

3
pe—

The transmitted magnetic fields H{t,4) for various parameters are shown

3 i in Figure 5 to Figure 9. First, the limiting constant p results exhibit
: excellent agreement with the analytical formulas (21) and (22), for the
i typical example (Figure 5) and for other variations of parameters (not
plotted), when the (practical) thick plate conditien (23), thus the condition
. (20), and the short pulse condition (28) are satisfied. Second, satisfying
5 . the additional but still pra:ztical condition (29), the H(t,d) in the
: typical nonlinear example has the same time shape as but 1s slightly
lowered near its peak by a factor ~0.8 from the H{t,d)} ic the same typical

example but with a constant Mo * Hpg (Figure 5). This agrees with (30)
as it should. Third, under the restrictive but practical conditions
(23), (28) and (29), the H(t,d)/H with different H  substituted in the

E typical nonlinear problem (Figure 6) decreases slightly near its peak for
i larger Ho. approximately according to (30), but has its time shape
virtually unchanged. This is as expected from Section 2.2.1. Similar
variations in wy s in view of the -wltiplicative factor vHo/(Zuo) to

convert the é-response to the narrow-pulse-response (32}, expectedly

27
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give similar results (Figure 7). Fourth, under these same conditions byt
varying the slab thickness d (Figure 8) and the up, & aR{Q) {(Figure 9j,
reapectively, in the typical nenlinear axample shows a time scaliug
proporticnal to uﬁadz, and an agplitude depandence approximately as
Ng;ids but slightly less than such a scaled value. Again, this is
expectad from {22) and Sectiom 2.2.1.

We conclude this numerical section by stating again that for shert pulses
and thick szlabs, under condition (23), (28), and {(29), the transmitted
magnetic fiald for the nonlinear u obeys approximately (22), with v =
but becomes slightly smaller as corrvected by (30).
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ég SECTION 3. THE CYLINDRICAL-INCIDENCE SLAB PROBLEM
=3
; éé Consider Figure 10, an incident cylindrical TEM wave
!
Y . 4
_ & Hy"(e,0,2) = 5 £t - £) (33a)
§ E:;n(t,p,z) = ;f;‘/:zf(c - 2) (33b)
; A o
,_%, - ig carrying a z-flowing current Icf(t ~ z/¢) on the surface of a perfectly
: if conducting wire of radius a impinging upon a slab as shown. In the
: cylindrical coordinates {p,$,z), the ¢-symmetry makes fields functions
. of (t,p,z). The parameters in Figure 10 have the same meanings as in !
ié Figure 1. ;
3 : Before solving the problem, we must make several remarks here. First, ?
'§ o one can, of course, solve the problem numerically either by finitely
7 differencing the field equations subject to the bounda onditions or i
ﬁ - by finitely patching the perfect-conductor mixed surface integral equations i
f toe solve for the surface current density on the wire and then t¢ obtain ;
g % i the field from the surface current density. Second, with its end surface ;
{ ? - present the semi-infinite cylinder does not have its surface as one of
N the coordinate surfaces of the eleven coordinate systems that permit the

separation of variables for the Helmholtz equation. Thus in using the
fariliar method of solving by the separation of variables and summation

of the products of the eigen functions (in this case rhe Hankel rransform
for o or the (2-sided) Laplace transform for z), not only are the coeffi-
cients mixed by the boundary conditions but also the expansion does not
converge at the edge of the cylindrical end where the electric field goes
to infinity (although weakly if edge condition of finite energy is imposed).
But to match boundary conditions means that we would have to manipulate

and evaluate the coefficients of a series at precisely the place where the
'f;—“ series representation is not valid. As a result, no con. isteat soluticn

can possibly be obtained by such a familiar method. The rigorous analytical
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solution, even to the simplified problem without the presence of the slab,
is therafore still an unanswered question [8].

In the following, we solve the cylindrical-incidence problem by an

approximate method whose validity range is established to te of practical
interest. The resulting formulas, being simply related to those for the
one-dimension problem, enable us to make use of results in Section 2 for

the present cylindrical problem.

Wrwirden < §
Bromon ok

3.1 ANALYSIS FOR THE CONSTANT u CASE

[ L |
Pronn, }

To find the diffused fields and the transmitted fields in z > 0, the oaly
physical quantity we really need from the incident z < 0 side is the

tangential field, either electric or magnetic, at z = 0, Although it

[T ]
[y

does not matter which one we start with if we can solve the problem exactly,
! it does make a difference in solving the problem approximately depending

on which approximation can be made more easily and more accurately.

e Now, for the real problem both the "wire region" p<a, z < d and the
"surrounding slab region' p > a, 0 < z < d are highly conducting. The -
magnetic field at the "inside" boundary p 3‘3—6w, z = 0, where 6w is the
skin depth of the wire regicn and is << a, is clearly much smaller than

S the B, at the ‘outside” boundary p 2 a, z = 0, regardless of the existence
of the conducting surrounding slab. In fact, without the slab's presence

this has been used to justify the incident current Io being associated

to a cylindrical TEM wave outside the wire, and with the slab's presence,
i and reflection, this is even more pronounced. Moreover, the area of the
' "inside' boundary, %az, is much smaller than the area of the "outside"
boundary, «. This makes the diffused and transmitted fields, being the

surface integration of the cross product of the H and the gradient of

e
- 1¥Y
the Green's function, depend even less on the "inside' magnetic field.

Thus, the H, at the ''outside" boundary alone predominatly determines the

b

diffused and transmitted fields. However, a similar result does not hold




for the boundary electric field. Because the "inside" boundary electric
field Ep, though negligibly small relative to the "outside" boundary one
when there exists no conducting surrounding slab, is not comparatively
negligibly small when the conducting surrounding slab is present and makes
the "outside" boundary Ep also vanishingly small. Consequently, we

must use the magnetic matching, not the electric matching, if we use the

"oytside” boundary fields only as an approximation.

Finally, for the case of narrow incident pulse and thick slab of practical
interest ((28) & (29)), the approximate “outside" boundary magnetic field

can be found easily. Since the slab makes the H¢ at p > a, z = 0 not

sensitive o the geometry beyond z > d, the H¢ there is wvirtually unchanged
if we extend the wire beyond z = d to z = », Furthermore, since the wire
is itself highly conducting, as far as fields on it are concerned we can
replace it by a perfectly conducting wire. The following analysis follows

such an approximation procedure.

-4

3.1.1 Formuylation and Analysis

e
- 1f the perfectly conducting wire extends to 21l z, then the incident TEM
é, wave (33) produces only TEM waves. Their wave forms for a constant u slab
- are just the one-dimensional results with Ho renlaced by Hoa/p where
: ; '; B = IO/(Zﬂa), and with Ex and Hy substituted by E5 and Hy respectively.

In particular, from (11)

f i qewire) o Lo . 28 - (1-a)e 27008 4] D> a
. 3 W 21 (1+a)2 _ (I_G)Ze—ZJﬁEE d
=0, p<a (34)

R 1/2
where & = \ureos/o) .
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Now, for the real problem of a terminated wire with ¢-symmetry, the TEM
wave cannot exist in the region z > U because of its necessarily accompanying

singularity at p = 0. Further, a TE wave, under the condition 3/3¢ = O,

has only E:E, Hgg, and H:E as the non-vanishing componeants. But the

boundary conditions, the continuity of tangential fields at z = 0 and z = d,
do not couple this TE mode to the incident TEM wave at all. Thus the TE
wave has its existence independent of the imcident wave and can te taken
as identically zero. Finally, a TM wave does exist, with non-vanishing

™ _IM ESM.

components H¢ . Ep , and

its superscrip s are omitted in the following,

In z > 0, this is the only mode existing, and

Similar to the one-dimension problem, the diffused fields in the highly
conducting slab 0 < z < d satisfy (2) and obey the equations

3
OF =~ -, (353)
1 3
L 13 35b)
oE, s (pﬁ¢) (
2 2
¢ H H d°H 30
__.‘.29;4..].-_5_;{ -;zﬁ-p 2‘3-“0 3¢’=0 (35¢)

In z > d they obey similar equations as (35) but with ¢ replaced by
soaiac. To solve the problem, in addition t¢ the Laplace transform in time
we make use of the Hankel tramsform in p [9].

vie) -_/O‘ dx Jv(Kp)QJ(K), p >0 (36)

Now, requiring as usual a + z traveling wave in 2z > &, finite fields at

‘:(w wire) (

p = 0, continuous Ep and H, at z = d, and that H¢(s,p,0) = H S,p,0)

¢
of (34), the magnetic field in 0 < 2 < d is (Appendix G)

< icaust o Difo o 4 et OIE
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. ﬁ¢{s.9,z) 3‘4:“ dx Jl(Kp) {E(K,s)e-x)z + n(K,s)eK’z} (37
i where
. - ((Wz)eM )
' q(K,s
j £{K,s) —(1-8)e~K>4
® X4 —Ksd (38)
j n{K,s) e (1+8) - e (1-8)
{0 end
. ak,s) 3 oo (8 LEI® | e - (1‘“);2&36 (39a)
0 T ()’ - (14ayZe2W08 d
Li
e > (39b) 7
. B = ;
1i ok
L )
. K> = /R 4uos » Real{ks} >0 , (39¢)
i
il
Re= /Ko Qa:os.2 » Real{kd >0 (394)

The electric fields in 0 < z < d are given immediately by (37) and (35a,b)
s The fields in z > d are (Appendix G)

. §¢(s,p,z) = seodljmdx KP(K,S)JI(Kp)e”Ke(z'd) (40a)
ﬁp(s,p,z) -jcwdx KK<P(K,S)J1(KQ)E-K<(z-d) (40b)
E_(s.p,2) =-'[de sz(x,s)Jo(Ka)e'K‘(“d) (40c)
where
p(K,s) = 18 | 28 (41)

; -Ksd
seok Fiagy - R

39




ol et S ot

by

sty

o 0100 ot DB B R o s X

MR A A TR R % 5

=i B e

3

.
.

A AMMM‘ i

3.1.2 Results and Their Relations to the One~Dimension Froblem

For a highly conducting {a << 1, condition (13)) thick (cdrfuc,?sc” i,
condition (23))slab, £, n, and p reduce ro {Appendix G)

(5(1(.3)\ I J (Ka)E(s) (e""d )
QO

= - {42)
n(K,s)} 278h(K.4) - K.d
1 J_(Ra)E(s)E,
p(K’S) = ﬂﬁKKé?h(K,d) (43)
We examine next such cases in detail.
From (40b), (41), and (43), the transmitted radial electric field at
z = d is (Appendix H)
= = -Kzt'
E_(t,p,d) = -'-I°f dt'f(t-t‘)[“""d 8 /0:—-——“")][ dKJ, (Kp)J (Ka)e "¢
n EsP, rad.Jy dat' Yad ucdz 0 1 Ko o
- -uop2 (44a)
1 v 4et
o tereopry] 8 (inc))_l—e
" Tody de’f(e-e )[dt' % Olucdz o
tl
if o 2> min(a, ;‘G‘) (44b)
I » —uoaz
o RN O (i_m‘:..)]y_qa 4t
N ncd,{ de’f(e~t )[dt' 4 Oluodz 47 ©

t
if p << max(a,‘/ E—-) (44¢)
HO

and becomes
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g,

o %%
¢) . 2afd ( ine )“f uo
E) (ep,) = SR S0, ofmadz |, 4K 9, @o)3 (Rade (45a)
—ngz
- X 4t
VES L (ot ) ke
od {dt ad P
if p >> min (a,‘/-t—) (45b)
1 ua
-ucpz
2ajd int uoo 4t
£a2149 4 3TE N,
v Tad [dt: 4(0 Wdz)] 4 ¢ '

if p << max hﬁ‘—;) (45¢)

for a 8-incidence Hlnc(:,p,z) = §{t-z/c)a/p. Here 34(V‘T) is one of the
Theta functions {10].

Similarly, from (40a) the transmitted magnetic field is

o
H P =/— E 20 + H .0 (46)
¢(t p,d) ‘/“o p(t p,d) ¢,dev( p,d)
Here, H (t,p,d) is the part of magnetic field which deviates (in its

$,dev
relation to Ep) from that of a pure TEM wave (Appendix H)

(t,p,d) = dt'

dt"f(t-t'-t") {dt" ( !i‘n’t;)}
"

H
$,dev ad

"K. t"
/ dK KJ, )J (Ra)J, (Kp)e e (47a)
Vu €0
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1 u £ (1] et
Jox [ g ' g peptapty fd ing"
v f c",/; dt’ £(t=t'=t") {dt.. 34(3; 2)}
{+] uod

-y@%&ﬂ% I(pgv)
e 4e” Iy 2e®

if a << max{p, ct')

{475}
-1 £ £t
A e fdt“ dt' f£(t=t'=t") [«5’——3 (of—‘-’-‘-‘—:)}
k< { "
2
3 —-pa
pt' (_29_) 4" (az" . az)
2" ug
A/uoeo
if a >> max (p, ect') (47¢)
and its S-response becomes
t t-t" «
(8) Zaf [d ( m"]f
i} (t,p,d) = " i roudl: D[] B dK
$,dev p,d) oduo 0 dt 0 dt dt "4 {de) 0
-k
— T——
KJl( RK(t-t 2) 1 (Ka)Jl(Kp)e uo (48a)
‘u e °
[+ o]
2
'/e 2 d i T
o a ot 4t nop
-y — == .o o)~
v u, o© [;t 84( ]uodz )}e 4t
uccztla
ifp > a, e > 1, (48b)
2
Jr' Zuga ]
o 2 a [d ( it )} 4t ugp poa
N - e ™ 8 ‘0! e ¥
M, @ dr 4 uadz Lt 4t
if p << a (48c)
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Thus at large p and small p the total magnetic fizlds, respectively, are

2
2 uop
(~uop )/ (4E) et
3(5)&,9,&} N = [d: (0!1“2%{;3 L-oe - s 2
uod o

2
if p >> a, e(noa €3/4 > 1, {4%a)

2a int (mucp )/(&t) (~uga )/(ét) uoga
v od {;t 6(01 )!d 5 e Te 4t }

if p << a (49b)

St aGemna e o Ao i ok i

for a H Clt,0,2) = &(¢ ~ m& alp.

Comparing (45) to (49) with the one~dimension results (4) and (19), we
2 . see that

; 2 2
.: (Q)(t o, d) " Ho(gi D(t d) { - e(-uuﬂ )/(4t) (1 + uzet )J
i (woc?t) /4
: if p >>a, e Hoc >>» 1 (50a)
{8) p g___ o (Hop )/(4t)
" done D t,d)

2
{l + e{ua(a -p )1/4 uz§ ]

if p << a (50b)
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and
£(8) (®) ~u302/ (ot)
(t P rd) - E D(t d) "' - g 7

if o »> min (s, &} {51a}

2
(6) . B uca (~uop )/ (4t}
one D(t di & 4t e

. L
if p << max{(a, uc) (51b)

The relations (50a} and (S5la} for large o >> a are intuitively plausible:
at early times before the effect of the wire region diffuses there,
t << ucpzlé, the fields do not feel the termination of the wire and are
just rhe diffused cylindrical TEM wave with the one-dimensional fields
multiplied by a/p, and at later time, the fields become smaller than such
a TEM version because they diffuse inro the wire region. The normalized
ratios H{®)(t,0,d)/ (Ho) (c,4) a/p) and z“)(:.p 0/ @S (e, aro)
as functions of a normalized time X = cf(uca ) show (Figure 11) such
behaviors. The one«dimensional peak diffused-through time X k/d
k/d/(uco ) (see (22b))as a functiom of d/p shows {(Figure 11) that for
d;p £ 1 the diffused fields are virtually a pure cylindrical TEM wave up
to the peak.

(5)(t,p,d) given respectively by

For small p << a, the H(G)(t p,d) and E
{50b) and (31b) go to zero at least as fasc as p, a4 consistent behavior
with a finite Ez and a finice total (conducting and displacement) current
density near p = §, and, of course, start from zero at t = 0, The ratios
(é)(t,o d)/Hégé D(t,d) and Eéé)(:,a,d)/Eégi_D(t.d) siow such behaviors
(Figures 12-1, 12-2, plotted similarly to Figure 1. but with p replaced

by a for the normalized time t/(pcaz) and with p as a parameter).

44

E il




St AT e e

I

it e e AT A e

i

b2
B
£

&
i
il
L 1 10%
§ e T 3 Yo w 3 ¥ H A 2 A ] i k) ¥ LA i
i - hd \. -
- \\ \ 3
N - \ \ gl p anelle o ap -
f - =
i .
H;é)(t. 3 d)fm‘s’tt. d a»./p}
107 ‘ ~G 10
S \ N\~ ;
‘ el
a A \\\ ¢/””'J<:;. B
o 3 o .
m L ]
T F /)< -
a
3 - // 1 3 ey E
%21
g ~ \
-
L a2 -
< 10 3 ,,»”’ \ El
- / \ -l
- / L
e -~ . -
il FROM (22b), Xy iy ~8.18 x 10'2 (a/p)? \ =
o g -y
e \ -
s
10'3 1 3 i 1L0!1_‘ H domannnd. lllng H S J\'}J__J 70.1
102 10! 1 10
X = tlnop?)
Figure 11. The Normalized Ratios Hg (t, p. d)/(H( (t d)p) and

( (t D, d)/(ET‘sD (t, d)p)from the p>>a Expresswns {50-a)
and (51-2) as Functions of Normalized Time t/(uap ), and
the Normalized 1-D Peak Time kald = tpkld/{’wp )

as a Function of (d/p)




e T St e et

.-fi
.
b
::? f:'q; &k L Y T 1 ’ ? r}::t:'mz
[ % - o Bfa = 1
E Lo -
IR pla=3x10"
. & o
£ & |
‘ ? 10 — 9.0
Lo » 3
b ? 4 g ~ .
S G _ - 102 .
E ¢ = pla=3x 10 P 1 =
. . ~
E gg o~
i =
- £ F ~ -
- 2 -
. ‘//———_\\ Pia = 19'2
: 102 f 4 1
b - P .
1 - -
] - - Yokig = 9.18 x 102 {d/8) trom (22b) -
" - =
3 10‘3 f ot g tasl 1 Loyl A L bt i) qg!
: 102 107! 1 10
E Y = tipoal)
'
4 : o u(8), (8}
f Figure 12-1. The Ratios H4'(t, o, d)/Hi-O(t' d) from the p<<a

Expression (50b) as Functions of Normalized Time t/(poaz)
. A 2
and the Normalized 1-D Peak Time fokld ® tpk!d/(poa )

as a Function of (d/a)

46




1 - - 2
<‘VT‘1\fol T =TT
B - \ \ﬁ -1

- -—n\.
+ \ Pla=1 -
. +
\ -~ -
p .~ -~
.\ \ \ \ % P/l"3xﬂ)'
L4

‘0.’ ,v: 10
.

R AR AR PR S

T—. "/'
/,7“7'
\

5 /
<\
/y)><
P

]l]l?]

> e

Youlg = 9-18 x 102 (d/a)? .

FROM (22b) \
- I \ \‘ ~

10—3 { 1! Poag el S ! li[xllL \1\4 i\l!

162 101 1 10
Y = t/poad)

/,L//\/ s \<2 \\ |
|

10!

| 3 Figure 1¢-2, The Ratio Eg'}(t, o, d)/E (5)0(t d) from theg<<a
i Expression {31b) as Functions of the Normalized Time t/

: -‘ (‘uaaz). and the Normalized 1-D Peak Time Y.\, =

"‘ pHd/(I‘ma ) as a Function of (d/a)

47




&
?ﬁi
5
-
]

T

ST ORI

ST

e e e e e I T ) g SR s en <

Now consider p ~ a. TFrom (43bh), the E(s)(t,p>>a d) expression is also
valid for E (s )(t<<uaa2,p%a dy. Similarly from (45¢), the expression
E( )(t,p<<apd} is valid for Egé)(t>>uca2,pma d4). Thus, for p = a, the
rano E( )(t a d)/E(‘S) D(t: d) at early times t << ucaz is given by the
large p curve (the F-curve, X << 1 part in Figure 11 with p = a) and at
late times t >> u0a2 is given by the small p curve (the Y >> 1 part of
the p = a curve in Figure 12-2). At t v u ¢ az, they do join smoothly
at ~0.2 (the E-curve at X ~ 1 in Figure 11 and the p/a = 1 curve at

Y 4 1 in Figure 12-2) which should be the right value. Similar couclu-~
sious hold for the Héé)(t,o“‘a,d)lﬁégi_l)(t,d). This is because at p Vv a
the part of magnpetic field which diverts (see (46)) from the TFM-like
behavior is negligible for early times and for late fimes, respectively,

in the large p expression (50a) and in the small p expression (50b).

We conclude by restating that (50) and (51) (plotted in Figures 11,12)
are valid relations between the cylindrical and the one-dimensional
solutions for highly conducting thick slabs of practical interest. From
these relations, we can multiply the one-dimension fields obtained in
Section 2 by a cylindrical-effect factor to make predictions for the

cylindrical-incidence problem.

3.2 THE NONLINEAR yu CASE

The nonlinear saturation effect can only occur in a region

a~vp ;2 a (52)
c
From Section 2.2 we have found that for the practically interesting
casaes of highly conducting thick slabs with narrow incident pulses
{(conditions (23), (28), (29)), saturation ounly reduces slightly the
transmitted fields but leaves intact their time shapes. Such are the

effects the cylindrical transmitted fields in region (52) will experience,
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with (50) and (51) still being the formulas to relate to those of the

one~dimension nonlinear problem which are solved semi-analytically or
numericaily.

T

For p not in the region (52), the constant-u results in Section 3.1 apply
directly.

Finally, we shall conclude with an example. Consider the typical problem

in Section 2.2.2, but with a wire of radius ~0.5 cm carrying an incident

Io = 27 aHo = 3.14 x 103 amp. The transmitted magnetic field in the

reglon p £ 1.25 m is approximately the Ho o 105 amp/m curve in Figure 6
aultiplied by the cylindrical factors (50) or its plots (Figures 11, 12-1).

For example, at p ~ a, the transmitted field has a peak value

5 -13 1 -8
H¢(tpk!d,pma,d) v 107 x 3.8 x 10 "x 1.0 x T n3.8 x 10~ amp/m

B g

Ho one-D at  p_
from Lk/d 8
Figure 6 from
Figure
11

1

with a peak diffusion time ~1.1 x 10-1 sec and a diffused pulse width
(At)l/lo ~ 4,0 x 10-1 sec, same as for the one-dimensional case. For

p > a, the peak field is smaller by a factor ~a/p, but that factor approaches
N(O.B)-la/p as p >> 1.25 m. At p < a, the peak decreases from (53) at

P v ato zero at p = o, roughly proportional to p as p X a and according
to (50b) as p<<a.

49




1.

2.

o

3.

FOOTNOTES AND REFERENCES
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APPENDIX A, BOUNDARY CONDITIONS (7)

From the Maxwell equations, by ignoring ¢ 3/3t compared with o, we have
in the 8lab 0 < 2z < 4

é 3z T THr Mo Be (a~1)
u o = - 2—‘:— (A~2)
i which immediately give (5). Now the boundary conditions at z = 0 are
{ H(t,0) = H [£(t) + g(¢)] (A1)
2 H(t,0) = - "2 g ole(e) - g(0)] (A~4)

z Eo o

which immediately give (7a), and the boundary conditions at z = d are

b H(t,d) = HOT(t) (A-35)
3 My
iz H{t,d) = - -e-o' HOOT(I‘.) {A-6)

which immediately give (7b)
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APPENDIX B.

DERIVATION OF FIELDS IN THE SLAB, ONE-DIMENSIONAL PROBLEM

In the Laplace domain, (3) reads

2
Lf fi(s,z) - uos fi(s,z) = 0 (B~1)
2z

where H{(r<0,z) £ 0 has been used, and (7) reads

- ’U . ,ﬁ .
%5' H{s,0) - -59- oH(s,0) = ~2 -&-9- Hoc'f(s) {(8~2)

o [&]

2 fi(s,d) + ‘/fﬁ’— ofi(s,d) = 0 (B-3)
3z 4 £ :

[+]

Thus, the solution of (B8~1) 1s

YUCOS z Yugs z

B(s,z) = A(s) e~ + B(s) e (B~4)

where A{s) and B(s) are to be determined. Now, from (B-2) we have

U ¥
(- + B) [uos - \/?: o(A + B) = -20 V—;:— B E(s)  (B-5)

and from (B-3) we have

e-—v‘ucs d +

B

.
(-A efuos d) oS + V_ég_ o(A e—wcs d
)

(B-6)

Solving for A(s) and B(s) from (B~5) and (B~6), substituting their values
into (B-4), and using (6) yields (9) znd (10).
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if APPENDIX C. DERIVATION OF SOME APPROXIMATE FORMULAS
j§ First, under the condition exp[sugs (z-2d)] << 1, the magnetic field
@ %

obtained by using only the A(s) term in (%a) for a S-incidence is

2
~k“/4t 2
{8) G a - a“t+ka ok
e {t,z) ~ 2 ‘/“reo T - 8 e erfc(a:‘t + 2"7?)
{C~1)
which reduces to (16} if 2oz Vuofeo >> 1, Here k T /uo z aad
a = fa??urao) .
Second, from (11') the result
) W €SS
(&) = 7 L a
BV (t,d) L ST,
W .
d 1 int
.2 f°—-[ 9(01—-—-—)]
¢ dat Ao d 4 uadz

coylzed | 1 ‘/ucdz 2 - -1/2) Puod? /e
o dt {40 d Tt E :

ui‘

:

is used in (19)
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APPENDIX D. HIGH FREQUENCY TRANSMITTED FIELD RELATIVE INCREASE

From (11'), for u = u_ the ratio of the transmitted magnetic field

at a frequency 8 = §, to that at s = s <8 1is

H(S,,d)) (niu s, )/ (Sh(bvu,s,)
" (d-1)

Rlu,) = (a(s<,d} " BALS )] (Sh(hALE,)

where h = d/o . Now we want to prove that for a smaller u = ¥, the

R(u<) becomes larger, i.e.

R(u) > R(u,) (©-2)

or rewriting it equivalently

Shix Sh x
Sh(tex) > Shitx) (-3

Here x 2 hvu,s > 0, r 2 v¥s /s > 1 and2 2 ¢u<?u> < 1. But the function
Sh(ix)/Sh{(Zrx), viewed as a function of 2, is monotonically decreasing
gince r th y > th{ry) for r > 1 and y > 0. This establishes (D~-3) and

completes the proof.
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ﬁ APPENDIX E. ARBGUMERT FOR EQUATICON (30)
éé Since the slab is highly coanducting with o >> U WE, whether it be saturated
or not, the “amount® of field admitted into the slab is about the same for
i eirher case (see {(11'))}. Now think of the H £1eld as the density {one~

dimensional in z) of some particles that diffuse in the slab. Then the
total number of them

i'g f&dz n (Hm)(é.z) " H(tc’zmax/tc) zm/tc

[OSRR

is about the same without and with saturation, if the pulse is narrow and
the slab is thick (see (28) and (29)). A&after ts both cases diffuse in
the same manner and should roughly give a peak transmitted field propor-
}. This makes (30} plausible.

P tional to H(:C,zm/tc
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APPENDIX F. THE CODE DIFUSN
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APPENDIX G. DERIVATION OF FIELDS, CYLINDRICAL PROBLEM

The ¢~independent cylindrical T™M mode in the highly conductive slab

0« z< d, from (35), assumes the form

i, = H:H - f dx Jl(Kp){E{K,s} KPos 7 L gy KRS z}
0

{G~-1)

e S v s

U
P T - f sV + yos 3,%0) [4 K, 0) &TRIRO 2

0

K +uos 2z }

+ nK,s) e (G-2)

g oed™all2 ay.ox [ [ . ~KTHuos 2
- I, =E, s o 37 (qu')) = f dK KJO(KQ) E(K,s) e
. = 0
E + n(kye) o/ KFTGS z} (6-3)

where the finiteness of the fields at ¢ = 0 has been used to choose the
Bessel funccion of first kind. Similarly, the fields in z > d can be

expressed as

] S
D] A M (3”2 -
. E, = E, (—2 s \.Oz_o) V(s,p,2z)
’ 1
3 2 ® AT e? (24
o - (*—: T8 MR, [ dK - pK,s) J_ (Rp) e KSHeofos® (2-d)
R sz~ T Jb .
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i
ok ® 2 ~ K508l (z=d)

= dk « K° p(XK,s) JO(Kb) e {G~4)
()
;E H¢ ﬁ¢ se, 53 V(s,p,z)

. 1--] 14 zi — —i'
L = se, f dX « X p(K,s) 3, (x0) e VK HoEose (2-d)
. 0
i
{G=5)
- 2
g =g V(s,p,2)

o ] 3paz

- f dK - RVE + u_e 2 bk, s) I (Re) & KZHuocas? (2-d)

0
(G-6)

where the @(s,p,z) is the cylindrical TM Hertz potential, and the require-
ment that the wave be positive-z traveling has been used to choose the
negative exponential expression. In the above, the choices of branch cuts (as

a function of s) are such that
Real {Vk™ + uos } > 0 (G-7)

Real (VK% + e s’} >0 (c-8)

02




?5 &5
L i Now at z = d, the continuicy of H¢ gives
; o E{K,s) e~k 4 n{K,s) R se K plX,s) (G-9)
s and the contimuity of E_ gives
(g
"
= E&s) e 4 s &Y ek px,9) (6-10)
Ly
‘. -
3 where K, = VKz*uos aud K, = \/K2+u°sasz . At z = 0, requiring that the
;.
total magnetic field be the approximate value (34) and using the integration
i ” expression
{
§ H
E . o 1
: f dR J;(Xe) J (Ka) ==, o >a (G-11)
(|
=0, p<a (G~12)
gives
) L 2B (s)[(L +a) = (1 - a) e 2VHOS 4y
£(K,s) + n(K,s) = by J,(Ka) - 5 7 <2 uee d
lL+a)" - (L ~-a)" e
z g(K,s) (G~13)
Solving (G-9), (G~1Q) and (G-13) gives
(1 + 8) eK>d
q(K,s)
£(K,s) _\a-p e-—bd (10
K>d ~K,d !
n(K,s) e (1 ~8)-e (1 - 8)
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Sand

PE—
At

X,s) , 28
p,s) = 3 (C-15)
se K a8~ el - g

where g T seoK>/(aK<}. These give (38), (39) and (41).

- 1/2
If a = (u e s/0) << 1, thus B8 << 1, and od *‘} uo/eo > 1, a
practical condition as stated in (23) which implies

a Ch{VYuod s)
Sh(;g_uc 5y <<% (G-16)

and

B Ch(K d)

mSh(K)d) << 1 {(G=-17)

then £, n, and p are simplified to

K>d

GRs)) [+ B)e T\ows | [1 - 2Ch(Vuos d) _ BCh(R.d),

n(K,s) 1 - gy o 5ol 28h(K. d) Sh(, fuoz d) _  Sh(K,d)
2 - - B e

Rodpy 4 o _ BCh(Kyd) aCh (Y uos d),
(K, 8) Sh(K,d) Sh(\/uos d)
ZSh(K>d)
“eg°d{1 _ a _ BCh(K,d) _ aCh(Yuos d)]
Sh(K,d) Sh{,fuos d)

{G~18)

A(K,s)Ky

., . aCh(Vuos d)  BCh{¥.d) ~
p(¥Ks) 5% K.5h(K.4) > <) (G-19)

(1 - sn(\jm'é'd')" Sh(K,d)
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(6~20)

IOJO(Ka) £(s)
T
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A({K,s)

These give (42} and (43).

where

e e 2y
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APPENDIX H. APPROXIMATE EXPRESSIONS FOR CYLINDRICAL PROBLEM

From (40b) and (43), we have

Ly 28(s) K,

-1 "
E,(t,p,d) v L f dR J; (Re) J (Ra) 5p » == Sh K.d
0

I ® 2
-2 f dK J) (Rp) J (Ka) L7+ H8J%>

Sh K,d
0
GL E -—
3 N rd
3 5 «f I « |4 2.
i S 1 - et (-K“:")/ (na)
; 3 ] Md[ dKJl(Kp) J, (Ra) f de’ £(t ~t') e
;b 0 0
¢ a izt
- ———r G (0!--—.-)}
E b {dt LAY
IO t d ine?

S = 1 - ! —— [

Tod f e’ £(x -t )[dt’ aa(og cmz)}

o (4] u

-« 2 '
f K J; Ke) J_(Ka) e -K7E")/ (uo) (H-1)
0

2
! ® ' (-puo/at’)
o 1 - ! d ( it . 1 - 2
™ Tod f dat' f(r - ¢ )[——-—dt. eé‘oiucdz)} -

0
if o >> min(a,#%‘-) (H-2)
-1‘9- ) de' f(t - t') g4 0‘_115'-.'_ . Hdp | (-azus/'dot‘)
nod de!’ 4( dz) et ¢

s} uo
1f o << max (a' ‘ﬁ'g) (§-3)
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Thus tne §~response for an incident H = g §(t - 2/ /p, i.e., Hof(” -
6{:)7 is
P 0 od idt "4 2 1 o
pod o
i
(H~4)
(-ueo?y/ (4e)

m-z-—é{—d—-S (0%1“ )} Ll e

ad {dt "4 uod?' o
i

if o > miu(a, Jﬁ-g) (B=5) y

; 2
2z |d int . mop _(-uoa”)/{4t)
N {EE 34(03 2)} e

ad cd 4t
r
if p << maxia, vr) (H-6)

Similarly, from (40a) and (43), we have

H.{t d) = L_l ” dR J. (Ko) J_(Ka) SCDIO . E(s) 1S3
CA 1 o 7o K_Sh(K.d)
0
oy 8¢
-1t f 4K I () E_(s,K,d) 7=
0 3
0
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- / & Jy(Kp) €, - [ﬁp(z,k,dy * {%E LHE) ¢ (7)) s(:)n
0

- f &K I (Re) €« [%‘p(t,x.a)
0

; |
3 |
‘ §(t) - (Kt L ;
oo - mm )] wE] |

. )
ﬁ VE° E (£,p,d) f & 5 &) [ der & ~'
= e P - v t! .

R 1 T 4

i !

1

Warraiesd

Re! .
Jl(m) gp(t t?,K,d)

' [ oo t
- ) — [ R
vu [Ep(tgﬂsd) f dk JI(KQ) f dt 7‘?;.8:

<o 0 4

j——

Borarstie
LAl N

t

o Htarae p e

T 1 I t"t: 2 t
.Il(—fx-:—v) T!Ud J (Ka) f dt" f(t"t"’t") e("K t )/(VO')
o
0

o) ]

€, IO t-t'
= — | - t n T s ]
Vu Ep(t.p,d) e = f 4t / de" f(e-t'-t™)

(o} [+ ) o

= l - 2 1t
f o 1 AL 5 ) 3,10y CEE ) (we) |

d irt”
uod 0 \ J
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v e IR E TR R A e A T A e

E
;

v-mw!ihaa

[P

"20 I, t 4 ing”
- = 1B {t,p,d) - de" — & (Q ...........)
5 e aod 7;13?.0 '4‘ {dt & | !uciz

c_:" a8 R
f dt' £(t-t'-t") f dX K.}'l('/%t?) Ja(&i) Jl(KP:’
(4]

0 [+ I )

LEEN (o)

’B
[}
uo Ep(trﬁsd) + H@,dev(t’a'd) (3‘7)

-1 t t-£" { "
o " ' S ST d ire

H¢,dev(t’°’d) N ucduo ! dt f dt' f(t-t'~t )tdt" 86(01 2)}
0 uod

. HO e[uc(oz+c2t'2)}/(—4t") I (uOcpc')
2" 1V 2"
tl
i << , H-8
fa max(o 7;:-2:;) { )
~I t t-c" 1n
o 11} ] - l_. " d iﬂt
v f dt f dt' f{t-t'~t )(dt” eé(oq dz)}
o (0] 0 ua
2
t' yuo 3 _(epoa)/ (4e") 4" 2
< ey € —— - a
bvi ey (2C ) (ua )
N -9
if a »>> max(o,:f‘-;ﬂ;;) {H-9}
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Thug, the §-response for s Hinc = g d{t ~ %Q/p is

t
(8 . 23 of_¢ ire"
By dev(®rPid) == "5 / dt {at" aa(‘:"uo 2)}

° 4% d

e 1] - 2 it
f dx xxl(%%g} 3, (Ka) J; (Ko) e CRTEN/ Guo)

) o

(H~10)

‘ =g
In particular, if a << max p,gnﬂnn it becomes
YU E

¢
(6) 1y & =22 ol d int\] o
Hy dev(t:f»4) ~ 5o dt 9&(0[ 2) 2t
o o uod

B ot

e{uc(p2+c2(t-t")2)}/(—dt") Il(gccggt~t"))

t
-2 a id imt Lg ugcp Wop et
adn {dt ea("’ 7)} TR f e’ e-tt)
° 0

L]

uwod ™

Sk e B

? i _ e[uc(pz+c2(t-t”)2)]/(-&t)

2 L2
-2au”gep |d ine ) (~uge ™)/ (4t)
-- Al Y e Hi
g 8uocdt uod <’ |

w© 2.2
; -/, dat Te(*ucc Y/ (4t)
4 0
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Here a2 condition on the

diffusion time tpk/d

2
gii {nocd)” >> 1

On the other hand, 1f a

(é)

¢,dev("°’d) "

H

[« %)

t

14
A el

u

)

2tH

. Bo 2a (4 (it A7 (-ucpz)liét) ug
5 o e EA el | G

{H-11)

time

2
gvoe e} & (5-12)

has been used to validate the third equality in (H-1l). For cases of
practical interest, (H-12) is amply satisfied for times up to the peak

v 107 pod? at z = d, because usually we have
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